Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation
Autores de CIPF
Participantes ajenos a CIPF
- Stojkovic, M
Grupos de Investigación
Abstract
Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.
Datos de la publicación
- ISSN/ISSNe:
- 1422-0067, 1422-0067
- Tipo:
- Article
- Páginas:
- 26608-26618
- PubMed:
- 26561800
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES MDPI
Citas Recibidas en Web of Science: 13
Documentos
- No hay documentos
Filiaciones
Keywords
- connexins; spinal cord; ependymal stem progenitor cells
Proyectos asociados
Dissecting protein trafficking in retinal neurodegeneration by super-resolution imaging on animal models and human iPSCs
Investigador Principal: SLAVEN ERCEG VUKICEVIC
FUNDACION LA MARATO DE TV3 . 2015
Estudio preclínico de terapia celular con progenitores neurales derivados de hESC e ihPSC combinado con modulación de astroglia en tratamiento de lesiones medulares
Investigador Principal: SLAVEN ERCEG VUKICEVIC
INSTITUTO DE SALUD CARLOS III . 2015
Cerebellar cells derived from induced pluripotent stem cells in 3D culture generated from ARSACS patients as faithful disease model
Investigador Principal: SLAVEN ERCEG VUKICEVIC
FONDATION DE L'ATAXIE CHARLEVOIX-SAGUENAY . 2015