Bioengineering Approaches for Bladder Regeneration
Autores de CIPF
Participantes ajenos a CIPF
- Serrano-Aroca, A
- Vera-Donoso, CD
Grupos de Investigación
Abstract
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting.
Datos de la publicación
- ISSN/ISSNe:
- 1422-0067, 1422-0067
- Tipo:
- Review
- Páginas:
- -
- DOI:
- 10.3390/ijms19061796
- PubMed:
- 29914213
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES MDPI
Citas Recibidas en Web of Science: 60
Documentos
- No hay documentos
Filiaciones
Keywords
- bladder regeneration; bioreactors; c; regenerative medicine; stem cells; scaffolds
Proyectos asociados
Biohibridos para la promoción del crecimiento axonal y la regeneración en el sistema nervioso central y periférico
Investigador Principal: M VICTORIA MORENO MANZANO
MINISTERIO DE ECON. Y COMPET. . 2016
Transplant of combined cell therapy form clinical grade iPSC-derived cells with neuroprotective small chemicals in a SCI rat model for central regeneration of spinal pathways
Investigador Principal: M VICTORIA MORENO MANZANO
FUNDACION LA MARATO DE TV3 . 2018
Combinatory treatment of Neural precursor cells and a new nanoconjugate of Fasudil for the clinical application in Acute Spinal Cord Injury
Investigador Principal: MARIA JESUS VICENT DOCON
FUNDACION LA MARATO DE TV3 . 2018