Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin
Autores de CIPF
Participantes ajenos a CIPF
- Cabrera-Garcia, A
- Checa-Chavarria, E
- Rivero-Buceta, E
- Fernandez, E
- Botella, P
Grupos de Investigación
Abstract
MIL-100(Fe) and MIL-101(Fe) metal-organic frameworks (MOFs) are excellent vehicles for drug delivery systems (DDSs) due to their high biocompatibility and stability in physiological fluids, as well as their pore diameter in the mesoporous range. Although they are appropriate for the internal diffusion of 20-(S)-camptothecin (CPT), a strongly cytotoxic molecule with excellent antitumor activity, no stable delivery system has been proposed so far for this drug based in MOFs. We here present novel DDSs based in amine functionalized MIL-100(Fe) and MIL-101(Fe) nanoMOFs with covalently bonded CPT. These CPT nanoplatforms are able to incorporate almost 20% of this molecule and show high stability at physiological pH, with no non-specific release. Based on their surface charge, some of these CPT loaded nanoMOFs present improved cell internalization in in vitro experiments. Moreover, a strong response to acid pH is observed, with up to four fold drug discharge at pH 5, which boost intracellular release by endosomolytic activity. These novel DDSs will help to achieve safe delivery of the very cytotoxic CPT, allowing to reduce the therapeutic dose and minimizing drug secondary effects. (C) 2019 Elsevier Inc. All rights reserved.
Datos de la publicación
- ISSN/ISSNe:
- 0021-9797, 1095-7103
- Tipo:
- Article
- Páginas:
- 163-174
- PubMed:
- 30685611
JOURNAL OF COLLOID AND INTERFACE SCIENCE ACADEMIC PRESS INC ELSEVIER SCIENCE
Citas Recibidas en Web of Science: 45
Documentos
- No hay documentos
Filiaciones
Keywords
- Metal-organic frameworks; Drug delivery; pH-responsive; Biodegradability; Camptothecin
Proyectos asociados
Transplant of combined cell therapy form clinical grade iPSC-derived cells with neuroprotective small chemicals in a SCI rat model for central regeneration of spinal pathways
Investigador Principal: M VICTORIA MORENO MANZANO
FUNDACION LA MARATO DE TV3 . 2018
Combinatory treatment of Neural precursor cells and a new nanoconjugate of Fasudil for the clinical application in Acute Spinal Cord Injury
Investigador Principal: MARIA JESUS VICENT DOCON
FUNDACION LA MARATO DE TV3 . 2018
Nuevo biomaterial bio-activo para la regeneración de lesiones medulares
Investigador Principal: M VICTORIA MORENO MANZANO
MINISTERIO DE ECON. Y COMPET. . 2019
Validación farmacológica in vivo de nanofármacos inhibidores de ROCK2 en cáncer de mama metastásico y lesión medular
Investigador Principal: M VICTORIA MORENO MANZANO
AGENCIA VALENCIANA DE INNOVACIÓN . 2019